Saturday, July 28, 2018

Baskets and stone hatchet

I made 2 types of basket and a celt hatchet. The first type of basket made was a coil basket. Bunches of palm leaves where wrapped in thin strips of lawyer cane to for a coil. This was then coiled into a spiral with each coil being tied to the last to keep it in place. This was done by sewing a new section of coil to the previous one. The basket was given a flat base so it could stand up but could be made any shape.

The second basket was made of lawyer cane. It started with thick strips of cane placed on the ground crossing in the centers to form an asterix shape. Importantly another half a lawyer strip was added so that the number of spokes the basket had was odd- even numbers don't work with this type of basket.  The canes were tied together in the center with a strip of bark and a piece of cane was woven in a spiral around the spokes like a spider web. When the base was wide enough the spokes were bent up to form the vertical sides of the basket. The weaving continued up the walls to the top and the ends of the spokes folded down back into the basket.

The coil method was very time consuming (about a week on and off) and made a heavy basket but used simple materials and had few gaps in it. Long grass could be used instead of palm leaves and any type of ties could be used to bind the coils. This type of basket can look very neat if done carefully (the one I made was rough). Also I would add that circular or rectangular mats might be made using this method and these materials. This might provide thick padding against the ground for sitting and sleeping and when finished could be rolled up and stored out of the way.

The woven cane baskets were much faster to make (2 or 3 hours each including harvesting materials). They used fewer materials and were lighter too. I could have easily made them bigger but wanted them to fit through the narrow door of the tiled hut.

 The baskets will be used mainly for storing charcoal inside huts out of the rain but are also useful for carrying leaf mulch for the garden. They have flat bases meaning they can stand upright and even be stacked on top of each other.

I also made a small celt hatchet for lighter work. The big celt I made is useful for chopping bigger trees but is overkill for saplings and smaller trees. The method used was basically the same for the big celt though this time I used no fire hardening. The handle came from a branch cleared from the the sweetpotato patch and had sat for a few months seasoning on the ground. It was much harder to shape than green wood but was hard enough to not need fire hardening. So far I've used it without the handle splitting though the basalt head chipped when trying to chop dry eucalyptus branches (an especially hard wood)- I re sharpened it and it works on other woods ok.

Share:

Yam, cultivate and cook

I planted a yam in a large basket like enclosure and then 6 months later harvested, cooked and ate it. My previous attempts at growing yams were stymied by wild pigs and scrub turkeys. On learning that yams are in the area, these animals will seek out any tubers planted and eat them. So my solution was to build a large basket like enclosure to protect the growing vine. 13 wooden stakes were hammered into the ground (an odd number being important in any weaving project) and lawyer cane harvested from the forest was woven between these uprights. The basket was about 1 m in diameter and about 75 cm high.



 A large yam, partially eaten by wallabies from a location further down the creek, was dug up and carried to the site. A small pit was dug in the enclosure and the yam simply placed in it. The enclosure was then back filled with dead leaves for fertiliser. As time progressed the vine grew above the basket and a long pole attached to it so it could climb into the canopy making full use of the sun.
After 6 months and no maintenance, weeding or watering the yam had grown into two large tubers whereas the original yam had rotted away leaving a thin husk. The new tubers were dug up using a digging stick. As carful as I was, the yams sill broke off with more tuber still under ground. This portion will probably strike next season anyway. In the canopy, the vine also produced smaller tubbers called “bulbils”. These were collected in a pot to be used as seed yams for a larger garden I’m planning. You can eat bulbils as well but the larger yam is generally eaten instead due to its larger size.
To cook the yam a fire pit was dug about 30 cm in diameter and about 20 cm deep. Wood was piled above the pit and set alight. The hot coals then fell into the pit where rocks where added to retain heat. The coals were scraped aside and the large tuber was broken up and thrown on top. The coals were raked back over it and a fire started on top. This cooked for 30 minutes before being pulled out of the coals. The outer layer of the yam was charred black and burning but the inside was soft and well cooked. The yam was eaten while steaming hot and tasted similar to a potato but with a crunchier texture near the outside much like bread crust. Although bland, yams provide a good deal of carbohydrates and are eaten as a staple in certain cultures. The remaining large yam tuber was tied up in a tree where rats could not eat it (hopefully).
This form of farming is a good way to get around the conventional farming practice of clearing trees to make fields. Instead the yam vine uses the trees as scaffolding to climb on, allowing it to reach the light in the forest canopy. The basket enclosure worked well to keep forest creatures from eating the investment. It also formed a good in-situ compost heap to nourish the yam as it grew. In future, I’d add sand to the mix as yams tend to do well in sandy soil and I expect it would be easier to dig up. Yams do well in dry conditions but will yield more if well-watered so digging a water retaining pit might help. Despite the large size of the yams I grew relative to ordinary potatoes, much larger ones are possible and are indeed routinely grown. The largest one from my research was 275 kg, grown in India. Yams have 116 calories per 100 grams compared to potatoes at only 93. They store well in the dry season as they are adapted to having a dormant period during these conditions. They are versatile in that they can be cooked into chips, roasted, boiled, mashed and made into a type of dough called “fu fu” typically eaten with stews.
Share:

Stone Adze | Primitive Skills


The video shows the construction and use of a stone adze.To put this video in context, the dome hut you see in the video is in the same spot as the wattle and Daub hut is today- only 2 years earlier (first started filming these builds).  I shaped the head from basalt using a hammer stone to roughly shape it (pecking) and a grind stone to polish it (grinding). I used an L shaped piece of wood to form the handle, carving a backrest to absorb the shock of each strike and lashed the stone to the handle using lawyer cane. I then cut down two trees and a sapling to demonstrate the time taken to use it (note-this land is an abandoned cane farm and not virgin forest). I would say that a stone adze is easier to make than a celt ax and is also quite effective at felling trees. The stone adze was the all purpose wood working tool in Papua New Guinea and favored over axes by most canoe building cultures. Later I discarded the adze, demolished the dome and built the wattle and daub hut without any previous technology I made- just to see if I could.
Share:

Cord drill and Pump drill

I made a cord drill and then upgraded it to a pump drill. A cord drill is basically a spindle with a fly wheel attached so it looks like a spinning top. the middle of a piece of cord is then put into a notch at the top of the spindle. The ends of the cord are then wrapped around the spindle and then pulled quickly outwards causing the drill to spin. The momentum of the fly wheel causes the cord to wrap back around the spindle in the other direction. When it stops the cords are pulled outwards again and the drill spins in the other direction.
I made the first one with a stone flywheel then made fire with it in the same way I make fire with fire sticks. Then I made and fired some clay fly wheels, made another drill with one of the fly wheels and fitted a stone drill bit to the end. This one I use for drilling holes in wood.
I used the new drill to make a hole in a piece of wood. I then put the spindle of the original cord drill through the hole in the wood, tied the ends of the cord onto the piece of wood and it became a pump drill. The cords were wrapped round the spindle as normal but now a pumping action of the wooden cross bar created the same action.
This was an interesting project. For fire making I'd stick to fire sticks because the equipment is easier to make. But for people with soft hands they could use the cord drill as it won't give them blisters. It should be added that the pump drill actually took longer than the cord drill (cord: 32 seconds, pump 1 min 30 seconds -the pump drill scene was edited down to make it watchable). The pump drill had more moving parts and was constantly having problems. As a fire making method I'd choose the cord drill over the pump drill unless all the parts were well made.


The main purpose I'd use these tool for is drilling holes rather than fire making. It was reasonably good but the stone bits I made could be improved and their attachment to the shaft also needs some thought. If the bit loosens and gets off axis slightly the whole thing wobbles.
These drills are impressive inventions and show potential for carpentry use later on.

Share:

Wood Ash Cement

I developed an experimental cement from made only from re-fired wood ash as its cementitious material. It was mixed with crushed terracotta as an aggregate and formed into a cube. The cement set hard after 3 days and did not dissolve in water after this period.
Process: First I burnt bark and leaves in a kiln at high temperatures to produce well burnt, mostly white wood ash. The ash was then mixed into water and stirred well. The excess water was poured off and the resulting paste was made into pellets and allowed to dry. A pellet was then re-heated in the forge until it glowed about orange hot. This was then taken out, cooled and dropped in a pot of water. The pellet dissolved and boiled due to a chemical reaction with the water. The paste was stirred and crushed terracotta (old tiles from previous projects) was added and mixed to form a mouldable mortar. This was formed into a cube and allowed to set for three days (in the video, a cube made exactly the same way 3 days previously was used due to time constraints). The resultant cube was strong and made a slight ringing sound when tapped with a finger nail. It was placed in water for 24 hours to simulate a very heavy rain event and did not dissolve or release residues into the water.
My current theory: The main component of wood ash consists of calcium in some form (e.g. calcium carbonate, calcium oxide). This can be up to 45% from my research. Calcium is in higher concentration in the bark and leaves of a tree. When the ash is mixed with water, the soluble component of wood ash (10% pot ash) dissolves into the water. But seeing that it does nothing for the cementing process, it is drained off leaving the insoluble calcium (and other components) in the paste. Doing this probably raises the relative percentage of calcium in the paste to about 50% or more. Most of the other 50 % consists of silica and alumina which are pozzolans, materials that chemically react with calcium hydroxide to increase the durability of the cement product. The paste was then made into a pellet and fired again to high temperature to convert all the calcium compounds to calcium oxide. It also reduces any charcoal in the pellet to ash if it hadn’t already been burnt the first time. This step seemed important as un-fired ash pellets only partially hardened and would fall apart in water, though retaining a weak undissolved 5mm thick crust. I can only surmise that re-firing the ash just gave a greater conversion of the calcium components to calcium oxide. The pellet is slaked in water converting the calcium oxide to calcium hydroxide. This cement was mixed with crushed terracotta which may also help in some way that I’m not aware of as I only did this one experiment and did not test other aggregates yet (e.g. sand, gravel etc.). Terracotta is porous and might hold together better than other materials. The mixture is allowed to set in air where carbon dioxide reacts with calcium hydroxide to form calcium carbonate cementing the aggregate together. After this, the cement will not dissolve in water.



Use: I think this material might have a potential use as a mortar holding rocks or bricks together in wet environments where limestone or snail shells are unavailable for making cement. Wood ash is a pretty ubiquitous material to most natural environments inhabited by people using biomass fuels. Wood ash cement turns a waste product into a valuable building material. From my research, wood ash is already being used as a partial replacement for cement in the building industry without decreases in strength of the final product. But I’ve only just started experimenting with it and don’t know its full capabilities and limitations. Calcium content of wood ash differs depending on the species of tree, the part of the tree burnt and the soil it’s grown on. Cautious experimentation is still required before committing to a hut built from this material.
Watch video: https://www.youtube.com/watch?v=DP0t2MmOMEA
Share:

Making Tiled Roof Hut

I built this tiled roof hut in the bush using only primitive tools and materials. The tools I used have been made in my previous videos. It should be pointed out that I do not live in the wild and that this is just a hobby. It should be obvious to most that this is not a survival shelter but an experiment in primitive building technology.
To cut and carve wood I used the celt stone axe and stone chisel made in this video. To carry water and make fire I used pots and fire sticks made in this video. Finally, to store fire wood and dry, unfired tiles, I used the wood shed built in this video.
The wooden frame was built with a 2X2m floor plan and a 2m tall ridge line with 1m tall side walls. 6 posts were put into the ground 0.25 m deep. The 3 horizontal roof beams were attached to these using mortise and tenon joints carved with a stone chisel. The rest of the frame was lashed together with lawyer cane strips. The frame swayed a little when pushed so later triangular bracing was added to stop this. Also when the mud wall was built, it enveloped the posts and stopped them moving altogether.



A small kiln was built of mud from the ground and a perforated floor of clay from the creek bank. It was only 25 cm internal diameter and 50 cm tall. Clay was dug, broken tiles (from previous batches) were crushed and added to it as grog and it was mixed thoroughly.This clay was pressed into rectangular moulds made from strips of lawyer cane to form tiles. Wood ash prevented the clay sticking to the stone. 20 tiles were fired at a time. 450 flat tiles and 15 curved ridge tiles were made with only a few breakages. 26 firings were done in all and the average firing took about 4 hours. The fired tiles were then hooked over the horizontal roof battens.
An underfloor heating system was built into one side of the hut to act as a sitting/sleeping platform in cold weather. This was inspired by the Korean Ondol or “hot stone”. A trench was dug and covered with flat stones with a firebox at one end and a chimney at the other for draft. The flames travelled beneath the floor heating it. After firing it for a while the stones stay warm all night with heat conducted directly to the sleeping occupant and radiating into the room.
The wall was made of clayey mud and stone. A stone footing was laid down and over this a wall of mud was built. To save on mud, stones were included into later wall courses. The mud was dug from a pit in front of the hut and left a large hole with a volume of about 2.5 cubic metres.
The finished hut has a swinging door made of sticks. The inside is dark so I made a torch from tree resin. A broken tile with resin on it acts as a small lamp producing a lot of light and little smoke. The end product was a solid little hut, that should be fire and rot resistant. The whole project took 102 days but would have taken 66 days were it not for unseasonal rain.
Watch Video https://www.youtube.com/watch?v=P73REgj-3UE
Share: